Nonlinear Transform 淺談機器學習原理-Nonlinear Transform Nonlinear Transform *通用能力 gerneralization : 就是將訓練好的模型,放到正式環境可以正常的運作,通常Linear Model的gerneralization會比較好,因為線性模型解決的問題比較單純。缺點是應用侷限比較大。 參考Chih-Chung Chang老師的範例:縣性與非線性分類範例 https://www.csie.ntu.edu.tw/~cjlin/libsvm/ 非線性問題 當如果今天假設要圈出裡面小圈圈的資料,我們就無法使用線性的模型,我們可以用非線性解像圈圈的方程式 s i g n ( − x 1 2 − x 2 2 + r ) sign(-x1^2-x2^2+r) s i g n ( − x 1 2 − x 2 2 + r ) 來解決,在演算法我們利用reduce來將不會的問題透過已知的問題來解決,所以在這個問題 我們將圈圈的方程式(非線性模型)reduce成線性模型來解決。 Reduce 方法論 我們調整圓形的方程式改為 z 0 z_0 z 0 , z 1 z_1 z 1 , z 2 z_2 z 2 來轉換線性方程式, { ( x n , y n ) } \{{(x_n,y_n)}\} { ( x n , y n ) } => { ( z n , y n ) } \{{(z_n,y_n)}\} { ( z n , y n ) } 在這空間資料中只要能找線,就可將不同的分類區分,圖中可以線性可以線去做分類。 透過向量方式來轉換成線性方程式 我們找到一個方式將非線性資料X透過向量轉換為Z後,希望透過線性方程式方式來學習,得到正解。 當我們Nonlinear transform轉換成線性方程式,當有新的資料進來我們無法使用invertiable(逆向工程)的方式去轉回非線