跳到主要內容

Python AI-神經網路

Python AI-神經網路

神經網路

標準NN

(1) 定義:

  • Fully Connected Neural Networks(NN)
  • 1980年開始流行
  • 輸入層 隱藏層 輸出層
  • 深度學習就是超過3層以上的隱藏層,每一層需要多少神經元
  • 每個神經元的動作是相同的
  • 多個輸入對應多個權重、 一個輸出

(2) 類神經網路圖示
我們可以將類神經網路是由很多神經元所組成,架構上可分為三層,第一層為輸入層(input layer)這一層是用來接收外面的資料,有可能是圖片、聲音、數字等等;第二層為隱藏層(hidden layer)用來訓練資料找到最佳函式表達(最佳解),此層可以多層的神經元組成;第三層輸出層(output layer) 將最佳解做輸出,此層只會有一個輸出.

神經元如何動作:每個神經元的動作是相同的,例如:H1接收到X1和X2的輸入值,反饋輸出不管輸入有幾條連結H1,他輸出值都會相同.
enter image description here

(3)公式解說
每個輸入的神經元都會有權重值(w1、w2…),這些權重值用來決定輸入值的比重,如果輸入值會影響輸出比較重,我們可以給他比較重的權重值.

公式1: 在所有輸入x權重的加總+b(調整值)可以得出一個輸出,如果這個輸出無法滿足答案,請看公式2
公式2: 通常輸出加上激活函數是才是最後的輸出答案

enter image description here

(3)激活函數(Active Function)
類神經網路需要激活函數的目的在公式1可以看到乘績之和所得到的結果,只是得到線性關係解.通常問題的本質大多為非線性,利用激活函數將輸出得到一個非線性的表達式,藉此達到問題的近似解.

*常見的激活函數

  • Sigmoid :模仿人類的類神經,輸入的刺激很小時,輸出就是0,反之輸出很大時,輸出也不會超過1
  • ReLU: 當輸入小於0,輸出就是0;輸入大於0,輸出等於輸入

enter image description here
參考:Mr. Opengate## 深度學習:使用激勵函數的目的、如何選擇激勵函數 Deep Learning : the role of the activation function

(4)神經網路訓練
神經網路可以透過訓練資料的方式來找到問題的解,所以我們可以定義一組訓練資料集{(X1,Y1)、(X2,Y2)、(X3,Y3)…},透過神經網路輸出可以發現有誤差值產生,利用平方的方式來可以獲取準確誤差值(因為用加總有可能會得到0),將誤差值再次輸入調整原函式,希望可以漸漸得到loss function差異越小,表示接近真實的函式表達

Loss Function:用來測量利用神經網路得到的函式與正確的函式差異值,如果loss function越小表示接近正確函式.
enter image description here

(5)神經網路訓練過程
神經網路的公式,會透過資料學習所去調整函式,我們可以知道新的權重Wx是由舊的所去取得,

enter image description here
參考:Backpropagation Step by Step
*W表示更新後的權重
W表示舊的權重
a 學習速率
error/w斜率

參考

  1. backpropagation
  2. https://mropengate.blogspot.com/2017/02/deep-learning-role-of-activation.html
  3. http://moocs.nccu.edu.tw/media/23054

留言

這個網誌中的熱門文章

GSON基礎教學

GSON 前言 JSON是很常見的資料交換格式,在JAVA領域常用處理JSON的函式庫:GSON、FastXML和JSON-B,本章節會以GSON為主,學習目標如下 JSON格式說明 GSON 套件函式 GSON: 物件轉換JSON字串 GSON: JSON字串轉換物件 JSON 格式說明 JSON全名為JavaScript Object Notation,它是一種輕量級的資料交換格式,會大為流行的理由,主要是他比傳統用xml更輕巧且容易處理, JSON表達方式物件會用大括弧{},陣列則是用中括號[]。 用JSON字串來表達Employee的物件內容,由JSON字串可以知道物件name、age、sex和salary屬性。 JSON表示員工資料方式: {“name”:”Jack Bryant”, “age”:18, “sex”:”M”,”salary”:3500.00} JSON陣列表示方式: 跟我們使用JAVA的陣列方式類似,內容值可以是數字’、文字、布林、陣列、物件、null等等。 範例: 字串: [“紅”、”橙”、”黃”、”綠”、”青”、”藍”、”紫”} 布林: [true, true, false, false, true, true] GSON 套件函式 Gson為google所發布的函式庫,主要將物件與json字串之間的轉換時方便使用。當我們將JAVA物件轉換成JSON字串稱為 序列化 ,JSON字串轉換至JAVA物件稱為 反序列化 。 GSON: 物件轉換JSON字串 有了JSON基本概念後,我們進入本章重點,首先我們需要建立員工類別(Employee),定義如下 物件 屬性 員工類別 Employee name 名字 age 年紀 sex 性別 salary 薪水 /** * name:員工類別 */ public class Employee implements Serializable { //constructor public Employee(String name, double salary){ this.name = name; this.sala...

Python AI-問題集

Python AI-問題集 問題集 Jupyter Notebook執行ipywidgets會出現kernel死掉的錯誤發生(The kernel appears to have died) 解決方法 (1) 根據log檔來判斷問題: 例如:log訊息出現OMP: Error #15: Initializing libiomp5.dylib, but found libiomp5.dylib already initialized. (2) 根據問題關鍵字找出問題所在: 利用google查詢所遭遇到的問題,例如我把上面的問題上google查詢可以找到這篇的解法 https://blog.csdn.net/bingjianIT/article/details/86182096 (3)實作解法: 我實作下面解法後,就可以順利執行手寫辨識的程式. //在Python宣告時加入 import os os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" 參考 https://blog.csdn.net/bingjianIT/article/details/86182096

PHP與Python搭配

今天介紹如何利用php網頁呼叫目錄下的python程式工作或是資料交換,本人整理的方法有兩種 使用system()、exec()、shell_exec()呼叫程式 (1) string system ( string return_var ] ) 參考網址 官網解釋system()用來執行外部命令,返回為印出的結果,passthru()跟system()類似但是它不會返回結果。 範例1. 利用system執行ls指定並顯示在網頁上,無法使用變數保留ls的結果 檔案名稱: psystem.php $jsondata= system("ls -al", $result); 結果: (2) exec() : string exec ( string output [, int &$return_var ]] ) 參考網址 範例2. 利用exec執行python程式並可以回傳json格式給前端網頁做處理並顯示。我們ptopy.php就是可以看到callpy()為執行py的函式,它執行完pyEx01.py會將結果給$jsondata變數,做後面json解析。 檔案名稱: ptopy.php function callpy() { $jsondata= exec("/usr/bin/python pyEx01.py"); return $jsondata ; } $jsondata= callpy(); echo $jsondata ; echo " " ; $obj = json_decode($jsondata) ; echo "name:".$obj-> { 'name'} .',' ; echo "id:".$obj-> { 'id'} ; 檔案名稱: pyEx01.py import sys ...